1. Psaty BM, Siscovick DS. Minimizing bias due to confounding by indication in comparative effectiveness research: the importance of restriction. JAMA 2010;304:897–8.
3. Rosenberger WF, Lachin JM. Randomization and the clinical trial. In: Rosenberger WF,Lachin JM. editors. Randomization in clinical trials: theory and practice. New York: Wiley Interscience; 2002. p.1–14.
4. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983;70:41–55.
5. Rubin DB, Thomas N. Matching using estimated propensity scores: relating theory to practice. Biometrics 1996;52:249–64.
6. Kataoka M, Gomi K, Ichioka K, Iguchi T, Shirota T, et al. Clinical impact of C-reactive protein to albumin ratio of the 7th postoperative day on prognosis after laparoscopic colorectal cancer surgery. Ann Coloproctol 2022;Jun 13 [Epub].
https://doi.org/10.3393/ac.2022.00234.0033
13. Shibutani M, Maeda K, Nagahara H, Iseki Y, Ikeya T, Hirakawa K. Prognostic significance of the preoperative ratio of C-reactive protein to albumin in patients with colorectal cancer. Anticancer Res 2016;36:995–1001.
14. Salas M, Hofman A, Stricker BH. Confounding by indication: an example of variation in the use of epidemiologic terminology. Am J Epidemiol 1999;149:981–3.
15. Guy D, Karp I, Wilk P, Chin J, Rodrigues G. Propensity score matching versus coarsened exact matching in observational comparative effectiveness research. J Comp Eff Res 2021;10:939–51.
17. Rubin DB. On principles for modeling propensity scores in medical research. Pharmacoepidemiol Drug Saf 2004;13:855–7.
18. Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J, Stürmer T. Variable selection for propensity score models. Am J Epidemiol 2006;163:1149–56.
20. Maldonado G, Greenland S. Simulation study of confounder-selection strategies. Am J Epidemiol 1993;138:923–36.
24. Staffa SJ, Zurakowski D. Five steps to successfully implement and evaluate propensity score matching in clinical research studies. Anesth Analg 2018;127:1066–73.